another pencil to sharpen...

As I put down the grade marking pen today, I think, what would my children think if they knew exactly what their teacher thought of them. I am so thankful that technology has not gotten to the point where my thoughts can be read. Would you be so surprised to find that your mouthy 7th grade daughter is so thoughtful and insightful and kind today - to a struggling special ed student? I see students' inherent kindness. I hear that skater kid complement another. Little acts of compassion - from students that will inherit our world. What happens to make them such cynical adults? From my side of the desk, I see them smile, struggle, and learn. It is my life's work - and I love it!
Each day/week a window into this world will be opened. Enjoy.

Sunday, November 13, 2011

Beep Beep Beep....odd how that sounds just like when my dryer is ready.

That beep beep reminds me of the film "October Sky."  Where young high school chemistry and physics students take it up on themselves to build a rocket after watching the Sputnik satellite fly over.  The risks taken in the movie by the young protagonists would get them arrested today!  Branded a terrorist, or evaluated for mental issues!
I believe that we have changed as a nation so much in the last 50 years.  We have become a technological giant but we also have raised 2 generations of children that do not know where their food comes from, haven't climbed a tree, or really don't "play" outside anymore.  Our obesity rate amongst children is sky high (overly processed everything on the grocery store shelves.)  There is even a movement to learn how to "slow cook!"
    We as Americans have become soft (hence the note about my dryer).  In the summer I dry my clothes on the line,  I have actually had neighbors ask me if my dryer was broken!  What?  No! I want my clothes to smell fresh - the reply? "You can get that from Downy!"
   I think of movies such as WALL-E and it is frightening just how real that scenario could be!
   Our next sputnik should be a push to return to the basics.  Playing outside, discovery, turning off the tech when not at work....turning on the outside world....tuning in to the world around us.  Our next sputnik should be to care for our planet.  Clean it, preserve it. enjoy it.

Sunday, November 6, 2011

Wordle for Oregon State Science Standards

Since when did instilling a sense of wonder not be part of our standards?

check this out....

Saturday, November 5, 2011

favorite bird

my favorite bird is the sparrow. Why? because without the drab little ordinary sparrow, you wouldn't notice the bird of paradise.

Hello, welcome!

Hope your year is going well.  I am posting my visual representation this weekend.  Please let me know what you think!

Tuesday, August 2, 2011

Magnitude of a fault and fault length

The experiment that my students did was to relate the magnitude of an earthquake to the fault length.  The students did this by attaching bungees to an 8ft board and an 8 inch board and measuring how far they had to pull the bungee before the boards would move.  They did 3 trials each. Even though they had 2 bungees attached to the long board it still took a significantly greater amount of force to move the long board than the short board.  This proves that the stresses involved in moving a long fault are greater than moving a short fault line.  Example:  The San Andreas fault is approximately 800 miles long, and therefore it can produce earthquakes up to 9.0 in magnitude, whereas a fault only a few miles long can only produce a 2 or 3 magnitude.  The students realized that since they are living on a fault that is very short (~ 1/4 mile), purchasing earthquake insurance is not really cost effective.  Earthquake insurance has a $50,000 deductible! The students had to trouble shoot how to pull the bungees equally on the long board and came up with using a broom handle. 

Tuesday, July 19, 2011

Tsunami in Japan

Last school year, our leadership group did a pennies drive for Japan disaster relief.  We also watched a webinar with a prominent scientist on the Discovery Education Network. The students were able to write in questions and listen to him discuss how a Tsunami happens and its effects on the island nation.  The questions ranged from how much water was displaced to how fast it traveled to what could be the effects on the western seaboard of the United States.  Living in the Northwest and cradled between 5 active volcanoes and an offshore subduction zone, the students are keenly aware of the dangers from earthquakes, pyroclastic floes and tsunamis.  They have an interesting take on things here...it isn't if it will happen...it is when it will happen.  Earthquake drills are serious business here - no student takes them for granted.  As for Japan, the most prepared nation for earthquakes and tsunamis? They were prepared more that we could ever hope to be.  That is why hundreds of thousands didn't die in that highly populated nation.  Middle school students are a unique bunch.  They still care. They care about their families, their friends, and are at the time in their lives where they can begin to feel what it is like to be in someone's shoes. That moment of discovering compassion is priceless.  We try as teachers to cultivate that care for humanity and help it grow. They never cease to amaze me.

Monday, May 23, 2011

ask a scientist?

Unfortuantely, I have not heard from the ask a scientist website as of this date....too bad/

Sunday, May 8, 2011

Presentation Tools - what is easy - what is not.

The most difficult thing about web tools is the learning curve.  A web tools that is intuitive with minimal instruction and still allows for the most creative personalization is the holy grail!  Some programs roll out a simplistic version for free that is clean in design but limited in use.  The user is soon frustrated with the limitations and after investing time to develop a limited product is not likely to switch to new but be willing to plunk down money for the "premium" version.  The cruix is to create a product where the user is not so frustrated as to abandon their work but make that leap with cash.
Some of the products listed on the resources page were fun to use but took time to just play with.  I found that many were blocked on my district website.  Any that had blogs and image file sharing were blocked as well.  As costs for IT skyrocket, my district has had to cut the IT department. This cut is hampering our ability to have sites proofed before allowing through the district firewalls.  None of the bloggs listed on my present coursework for my masters is allowed.  I cannot even play the video on the resources page of my class on my school computer. Youtube is completely blocked.
I have found that some of the products have a lower learning curve. Prezi was fun and quite intuitive.  I had my kids knock it around a bit and couldn't get them off of it for me to spend some time with it.  I've used webposter - ok but boring. Our technology class uses WIX as a web design tool. The students enjoy the ease and have equal access to it at home.  The best part is that the school tech adm is also the tech teacher and she can set limits to what content the students can upload to be visible at school.  I will be spending more time with these this comin week to see which works best for my presentation.  I think I will ask the 8th grade tech class to test drive a few that are district accessible and give me a synopsis of performance from their perspective. The tech teacher is always looking for opportunities like this for her students.  If I get the feedback in a timely manner, I will post.  One I did not see is Edmodo.com - its like a social network for classrooms.  I know of quite a few tech teachers that use it to guide classroom instruction, notes, homework, grading, etc. 
All of the others that had any links to blogs, youtube, social networks, or chats are blocked at school.  Although some would be great for personal use, my focus is for classroom use, if I can't see it, neither can my students and I will not waste my time on work that will not benefit my students.
http://cooltoolsforschools.wikispaces.com/Presentation+Tools
http://www.edmodo.com/

Sunday, April 17, 2011

Paper Boats!

            An exploration of the properties of water would be incomplete without a discussion about the surface tension of water. Surface tension is a difficult concept for students to understand. Students often ask, “How can something liquid act like a solid?” The answer is in the behavior of the water molecule at the surface as compared to that of a water molecule within the liquid. Within the liquid, the molecule exerts a force in all directions as does all the other molecules, allowing them to “roll over” one another exerting a net force of zero (Chaplin 2010). This moving around is what makes water a liquid; it pours.
            Conversely, at the surface, water exerts a force toward itself only. I do not say downward, because, in small enough quantities, water will form a complete sphere or drop. This force is exerted inward over the entire surface of the drop.
            The water molecule is slightly electronegative and will attract the hydrogen end of another water molecule. This attraction is called a hydrogen bond. Since each molecule of water is attracted to another, the result is strong surface tension. So much so that water has a stronger surface tension than most other molecules (Chaplin 2010). This bond has led scientists to believe that water may not be a liquid at all but a continuum between a liquid and a solid as the hydrogen bonds between molecules break and reform (Yarris 2005). This weak bonding of the hydrogen ends of the water molecule occurs most often at the surface where there are unequal forces upon the molecules. The unequal forces push the molecule toward the solid state. It is when the molecules are on the continuum toward solid that produces the surface tension.
            To break the surface tension of water, an application of sufficient force to break the weak hydrogen bonds between the molecules would be necessary. This can be done with a physical or chemical force or temperature difference sufficient to break the bonds.
            To test the surface tension of water, I chose to apply a chemical force on the hydrogen bonds. An easy way to show the distribution of that force is a simple lab called “Paper Boats.” This lab is usually conducted at the elementary level to introduce the property of surface tension without an in-depth explanation of the unique bonding between water molecules. My hypothesis is that an application of dish soap to the surface of water will break the tension. The molecules of water will move to exert an equal force in all directions with the soap creating a new surface thus changing the bonds between the water molecules. This movement will create a force on the paper boats across the surface of the water propelling them forward. The distance traveled by the boat will be in direct relationship to the amount of drops of dish detergent applied.
            The materials needed are a rectangular container 13.5 in. L x 11 in. W x 5.25 in. H, enough room temperature water to fill the container with ~6 cm deep of water, sharpie marker, 24 cm ruler, 2 eye droppers, additional sample of water, dish soap, 3 paper boats constructed of ordinary card stock paper (construction paper will suffice) cut into a rectangle with a triangular end.  The opposite end has a small rectangle cut out in the center making the entire thing look a lot like a house. 
            I began my experiment by marking the dry bottom of the container at 2cm intervals beginning at the 6 cm distance from the narrow end and continuing across the container bottom.  The next step is placing the boats in the water on the narrow end of the container.  The boats were situated with the point end toward the center of the container and equidistant to each other.  Care was taken to release a single drop of dish soap into the area directly behind the rectangular cut out portion of two of the paper boats.  One boat received drops of water from the same source as the water in the container.  Drops were applied to the area behind the boats in direct succession.  Distance traveled by the boats was recorded once the boats stopped moving.  Additional drops were applied in succession until the boats “arrived” at the other end of the container. 
            The boats that received the dish soap drops traveled the length of the container with movement at approximately 4-5 cm per drop.  The boat that received the water drops did not move forward at all.  My hypothesis was correct.  The dish soap broke the surface of the water tension and propelled the boats forward.
            This experiment was quite fun to do.  Although it was elementary level, the kid in me really liked playing with the boats.  Afterward, we tried dropping the soap at different locations around the boat to see if we could make them travel on a specific path.  That would be an interesting guided inquiry extension to present to students.
            The challenge I faced was that my family wanted to become involved.  My spouse and children had difficulty being patient enough for me to gather my data before they began experimenting with the steering of the boats via dish soap.
            In presenting this to a class as a structured inquiry, it will be important that spills are cleaned up immediately to avoid a slipping/falling hazard.  Playing in soapy water is fun for a large number of students.  Care should be made that the amount of soap applied to the water is not too extreme and that suds are not produced.  Once the surface becomes saturated with soap, the surface tension will be completely broken and the boats will no longer move.  An alternative control of the amount of soap would be to have the students just gently touch a soapy glass stir rod to the surface behind the boats. 
            The main concern I have about a guided inquiry with this activity, is the limited amount of class time I have.  After attendance, instructions, lab set up, and lab clean up; the time for actual lab work for 38 students is approximately 20 minutes.  After each student conducts the lab and records their results, there isn’t much time for exploration unless it is done during a subsequent lesson.  Unfortunately, that is a luxury I do not have with my curriculum constraints.  I could have smaller groups. Smaller groups mean additional supplies that tax my already limited budget.  It would increase the lab set up and clean up times. I would be in the same predicament with lack of time. The crux of enrichment and extension activities is that in the “real world” classroom, time is a luxury. 
            Presenting the exploration of the properties of water as an open inquiry is a wonderful idea provided that students understand those properties. The weak bonding of the hydrogen ends of water molecules to each other to create a substance that behaves on a continuum between a solid and a liquid is beyond the level of the majority of my students.  It is a subject of continual study in the Berkley Science lab.  Until we can actually witness the behavior of these molecules, not likely because molecules vibrate beyond the light spectrum, what constitutes the classical definition of water, beyond 2 hydrogen and one oxygen, is still up for debate (Yarris 2005).  And the explanation of its properties with how they relate to that molecule is a major focus of study at the collegiate level.  Students below that level can only give basic responses to why when they are left to explore on their own.  Its fun, but what are they really learning?  That soap can move a boat?  Knowing the “How” is where learning takes place.  Open inquiries work best when the students know the “how” and can use that knowledge to proof that knowledge.


References
Chaplin, M. (2010, April 6). Anomalous properties of water. Retrieved April 16, 2011,
            from London Southbank University, London, England website: http://www.lsbu.ac.uk/index.shtml
Yarris, L. (2005, October 27). Water: Dissolving the Controversy. Retrieved April 16,
            2011, from Lawrence Berkeley National Labroatory website:    http://www.lbl.gov/Science-Articles/Archive/sabl/2005/October/03-water-  contoversy.html